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Results of an experimental investigation of the evolution of a nonlinear wave train on 
deep water are reported. The initial stage of evolution is found to be characterized by 
exponential growth of a modulational instability, as was first discovered by Benjamin 
& Feir. At later stages of evolution it is found that the instability does not lead to 
wave-train disintegration or loss of coherence. Instead, the modulation periodically 
increases and decreases, and the wave train exhibits the Fermi-Pasta-Ulam recur- 
rence phenomenon. Results of an earlier study of nonlinear wave packets by Yuen & 
Lake, in which solutions of the nonlinear Schrodinger equation were shown to provide 
quantitatively correct descriptions of the properties of nonlinear wave packets, are 
applied to describe the experimentally observed wave-train phenomena. A comparison 
between the laboratory data and numerical solutions of the nonlinear Schrodinger 
equation for the long-time evolution of nonlinear wave trains is given. 

1. Introduction 
One of the first detailed investigations of the time evolution of nonlinear deep-water 

waves was performed by Lighthill (1965)) who examined the evolution of a smooth 
initial wave packet using the averaged Lagrangian theory developed by Whitham 
(1965). His solution predicted that the nonlinearity would lead to a focusing of energy 
towards the centre of the pulse as the packet evolved in time, but the solution became 
singular within a finite time. Lighthill commented that such behaviour is indicative of 
the presence of an instability associated with nonlinear deep-water waves. Two years 
later, Benjamin & Feir (1967), using a perturbation approach, demonstrated that a 
uniform continuous wave train is unstable to modulational perturbations of its 
envelope. The same problem was examined by Lighthill (1967) using Whitham’s 
theory. While both results predict instability, they differ in the details of the condi- 
tions for instability. Neither of the results yields any information regarding the long- 
time behaviour of the wave train. The Benjamin & Feir results are limited to the 
initial instability, while Lighthill’s solution again leads to a singularity in a finite time, 
as in the case of wave packets, although in principle Whitham’s theory should be 
asymptotically valid. 

t Permanent address : Department of Mathematics, University of Arizona, Tucson, Arizona 
85712. 
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Further progress in the subject was made by Chu & Mei (1970, 1971), who used a 
multi-scale method to derive the governing equations. Their equations are similar to 
those used by Lighthill (1965) except for an additional term in the dispersion relation, 
which was shown to be of the same order as the nonlinear correction. The presence of 
this term, a term proportional to a-la2a/ax2, where a is the amplitude of the wave 
envelope, changes the mathematical nature of the equations and eliminates the singu- 
larity encountered by Lighthill (1965, 1967). However, because of the appearance of a 
in the denominator, their numerical calculations are also limited to a finite time since 
the computation breaks down whenever a vanishes a t  any point. 

Zakharov (1968) (and later Hasimoto & Ono 1972; Davey 1972) showed that, if the 
wavenumber variation is small, the governing equations can be reduced to a single 
equation for the complex wave envelope: the nonlinear Schrodinger equation. Later, 
Zakharov & Shabat (1972) solved exactly the initial-value problem for the nonlinear 
Schrodinger equation for initial conditions which decay to  zero sufficiently rapidly. 
The exact solutions predict that an arbitrary smooth initial wave packet will even- 
tually disintegrate into a definite number of permanent wave packets (envelope 
solitons) which are stable to collisions. Yuen & Lake (1975) then proved that Whitham’s 
theory, when applied consistently to  the order considered, yields the same nonlinear 
Schrodinger equation. With this finding, the apparent discrepancies between Whit- 
ham’s theory and the results of Benjamin & Feir are resolved, since the nonlinear 
Schrodinger equation reproduces the Benjamin & Feir instability for the case of an 
initially uniform nonlinear wave train. 

Despite the interest in the subject, surprisingly few experimental results have been 
published. Benjamin & Feir (1967) and Benjamin (1967) have presented some experi- 
mental evidence which qualitatively supports their analysis. Feir (1967) also exhibited 
some results on the evolution of an initial wave packet, which were later used by Chu & 
Mei to obtain comparisons between experimental measurements and the results of 
their numerical calculations. A systematic testing of the quantitative aspect of the 
theory by well-controlled experiments was not undertaken until 1975, when Yuen & 
Lake ( 1975) verified that the nonlinear Schrodinger equation provides a quantitatively 
satisfactory description of the long-time evolution of wave packets. Lake & Yuen 
(1977) then re-examined the experiments on the initial instability of wave trains and 
accounted for the apparent discrepancies that existed between the analytical and 
experimental results of Benjamin and Feir as they presented them (Benjamin & Feir 
1967; Benjamin 1967). 

Despite the encouraging agreement between experiment and theory for the long- 
time evolution of nonlinear wave-envelope pulses and for the initial instability of 
nonlinear continuous wave trains, there has not been a consensus of opinion regarding 
the long-time behaviour of a continuous wave train. As discussed in 5 3.2 of this paper, 
theoretical arguments have been used by Benjamin, Hasselmann, Chu & Mei and 
others to propose several possible, and mutually exclusive, end states of wave-train 
evolution. Because experimental evidence of the kind which might serve to identify 
the correct long-time behaviour was not available, we began an experimental investiga- 
tion of the evolution of nonlinear continuous wave trains. In  this paper we report, the 
results of that experimental investigation, in which we have studied wave-train 
evolution from the initial onset of instability on uniform or nearly uniform wave 
trains to the long-time behaviour of the wave trains during and after the stage where 
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the resulting amplitude modulations become very strong. The experimental results 
are then considered as they relate to the known properties of nonlinear wave pulses 
and the results of numerical solutions of the nonlinear Schrodinger equation for the 
evolution of continuous wave trains. We believe that the results of these investigations 
reveal the correct long-time behaviour of nonlinear continuous wave trains on deep 
water. 

2. Experiment 
The experiments were performed in a 3 x 3 x 40 ft  water tank. A programmable 

surface wave maker is located a t  one end of the tank and a simple but effective (reflec- 
ted amplitudelincident amplitude < 5 yo) wave-absorbing beach a t  the opposite end. 
The evolution of surface wave trains was measured as they propagated down the tank 
from the wave maker to the beach, using capacitance-type wave amplitude gauges 
located a t  stations 5 ,  10, 15,20,25 and 30 ft  downstream of the wave maker. 

The wave maker is a hinged paddle activated by a hydraulic cylinder. The hydraulic 
system which drives the cylinder is controlled by a servo-amplifier and feedback 
position transducer, so that the paddle motion is constrained to follow the wave form 
of the electronic signal applied a t  the input of the servo-amplifier. The electronic input 
wave forms are prescribed by computer-generated analog tape recordings. I n  this way, 
the particular wave forms of interest could be accurately produced in the wave tank 
for an  amplitude range of 0.01-2*0 in. (peak to peak) and for a frequency range of 
1-5 Hz. The wave-maker system is supported on structures that are mounted directly 
on the laboratory floor and are not on the wave tank itself. I n  this way, mechanical 
vibrations associated with operation of the wave-maker system components have been 
effectively isolated from the wave tank. To keep the distilled water in the facility 
clean, and to ensure that the dynamics of the surface waves are not subject to effects 
of surface films, the facility is provided with two 5 pm filtering systems, including a 
surface skimmer, an ultra-violet sterilizer and a deionizer. The skimmer and plumbing 
inlets were removed and the filter systems shut down during experiments, so that these 
systems in no way interfered with fluid motions during the measurements of wave 
evolution. 

The experiments were performed using either purely sinusoidal signals from com- 
mercially available function generators or F M  tape recordings of computer-generated 
wave forms as inputs to  the wave-maker servo-system. Tape recordings were used 
whenever wave forms with more than one prescribed frequency component were 
required. These wave forms were composed of a carrier wave of prescribed frequency f 
and a pair of side-band frequency components f & Af having prescribed values of Af. 
The magnitudes of the side-band amplitudes relative to  those of the carrier waves 
were also prescribed. I n  all the experiments described in this paper, the amplitudes of 
the prescribed side-band components of any single initial wave form were equal. A 
wide range of initial wave forms was used, however, in which f, Af and the ratio 
So = side-band amplitude/carrjer amplitude were varied. The initial wave-form input 
signals, whether from tape recordings or function generators, were played into the 
wave-maker servo-system through a variable-gain amplifier which allowed the overall 
amplitude of the wave form to be controlled. I n  this way, the amplitudes and slopes of 
any given initial wave form could be prescribed and set over a wide range of values. 
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Actual wave amplitude measurements from the gauge a t  the 5 f t  station were used to 
set particular initial wave amplitudes and slopes. The relationship between the values 
of ka obtained from measurements of frequency and amplitude a t  this first downstream 
station and the initial values of ka used in the theory as the measure of initial non- 
linearity of Stokes wave trains is discussed in 5 3.1, and in more detail in Lake & Yuen 
(1977) .  

Wave amplitudes were measured using capacitance-type gauges with extremely 
stable solid-stabe circuitry and single-element probes made of 0.010 in. O.D.  hypoder- 
mic tubing. The hypodermic probes provide high resolution measurements of the 
wave forms (which requires a small probe diameter), while retaining the stiffness 
required to resist wave-induced motions of the probe itself (which would introduce 
measurement errors). The wave amplitude gauges were calibrated before and after 
each series of experiments to assure that measurements were not subject to errors 
produced by calibration changes. The calibrations were performed using vertical 
traverse mechanisms mounted above the water surface in the wave tank. The gauge 
outputs were linearly proportional to wave amplitude, with sensitivities typically 3 Vl 
in. over a 2 in. range. During the experiments, the gauges were supported above the 
water surface by adjustable struts attached to the top edges of the tank walls so that 
the sensitive portion of each probe was centred around the mean water level. Although 
the output of every gauge was linearly proportional to the wave amplitude, each gauge 
had a slightly different sensitivity. As a result, the oscillograph record of the output 
voltage from any given probe is an accurate representation of the wave form of the 
water waves measured by that probe, but the absolute magnitudes of the wave forms 
showp in oscillograph records recorded by different probes cannot be used to compare 
actual wave amplitudes a t  different measurement stations unless differences in probe 
sensitivity are taken into account. The series of oscillograph records used in several of 
the figures in this paper are therefore true representations of the wave form changes 
which occur as wave trains evolve, but should not be used to compare wave amplitudes 
at different measurement stations. 

Typically, experiments were performed by feeding the input signal (from a tape 
recording or a function generator) for the desired wave form into the wave-maker 
servo-system and using the wave amplitude measurement a t  the 5 f t  station to adjust 
the system amplifier gain until the desired initial wave amplitude was obtained. The 
output signals from the wave amplitude gauges were displayed on a multi-channel 
oscillograph recorder to monitor the gauge outputs and produce records of the meas- 
ured wave form. The gauge outputs were also tape recorded, together with an identi- 
fying coded time signal, using a fourteen-channel FM tape recorder. Each experimental 
condition or run was recorded for a t  least I2  min of real time in order to provide data 
samples sufficiently long for accurate generation of power spectra. For nearly all of the 
experiments described in this paper, the quantitative information of primary interest 
(side-band amplitude levels, side-band growth rates, side-band frequencies, etc.) was 
obtained from wave amplitude power spectra. The spectra were typically calculated 
for a frequency range of 0.1-16 Hz, using 16 ensemble averages for a resolution band- 
width of 0.05 Hz. The range of carrier frequencies used was from 1.5 Hz to 3.5 Hz. The 
initial values of ka used in these experiments were typically from 0.10 to 0.35, although 
some cases were run for values as low as 0.03. When experiments were performed 
using modulated wave forms as inputs to the wave-maker servo-system, the nor- 
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malized amplitude So of the imposed side-band components was varied from 0.01 to 
0.50. Additional details regarding the facilities and procedures used in these experi- 
ments may be found in Lewis, Lake & KO (1974)) Yuen & Lake (1975), and Lake et al. 
(1976). 

3. Results 
3.1. Initial stage of evolution: the Benjamin-Peir instability 

Benjamin & Feir (1967) have shown that a periodic wave train with initially uniform, 
finite amplitude is unstable to infinitesimal perturbations in side-band frequency 
components in the range 0 < 6 6 BBka, where k is the wavenumber, a is the wave 
amplitude and 6 = Afgmeasures the frequency separation of the side-band and funda- 
mental components. Their analysis also predicts that the unstable side-band com- 
ponents will grow exponentially a t  a time rate s2 which depends on 6 and ka and is 
given by Q = nS(2k2a2 - S2)+ f, with the maximum growth occurring for 6 = ka. 

In  our experimental study, we have measured properties of nonlinear wave trains as 
they evolve from conditions of initially uniform amplitude as well as from conditions 
with imposed initial amplitude modulations. When wave trains were generated with 
initially uniform amplitudes and initial values of ka greater than or equal to 0.1, we 
observed the onset and growth of periodic amplitude modulations as the wave trains 
propagated from the wave maker towards the beach in our 40 f t  wave tank.t Examples 
of the growth of such a modulation, as observed in the measured wave forms and their 
power spectra a t  several locations along the length of the tank, are shown in figures 1 
and 2. I n  such cases the wave amplitude modulations, which correspond to pairs of 
side-band frequency components in the power spectra, develop spontaneously from 
very small random background perturbations. We find from our experiments that, 
when a wave train of initially uniform amplitude evolves subject only to low levels of 
random background perturbations, a single pair of side-band frequency components 
appears and the continued evolution of the wave train is dominated by only that pair. 
Such behaviour is consistent with the analysis of Benjamin & Feir, which predicts 
that a nonlinear wave train is most unstable to perturbations at a particular pair of 
side-band frequencies, given by 6 = (ka),. We also find from the experiments, however, 
that the values of 6 obtained from either the measured modulation periods or the side- 
band frequency components in the spectra are consistently lower than the values of 
ka obtained from measurements of the amplitudes and frequencies of the wave trains 
at  the initial station, which is located 5 f t  from the wave paddle. As discussedinLake & 
Yuen (1977), this difference is associated with the fact that finite amplitude waves 
generated by sinusoidal wave-paddle motions do not have true Stokes wave profiles, 
for they lack suitable second-harmonic components. Although such waves have the 
intended amplitude and frequency, they are effectively ‘less nonlinear ’ than amplitude 
and frequency measurements would indicate. The values of ka obtained from the 
measurements of the first-order quantities f and a, through use of the formula 

(ka)meas = (2nfrrf2a/g, 

t When uniform wave trains with initial values of ka less than 0.1 were generated, measurable 
amplitude modulations did not develop within our tank length, presumably because of the 
combined effects of dissipation and the low growth rates of the modulations in such cases. 
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FIGURE I .  Wave amplitude measurements showing the onset and growth of the 
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Benjamin & 
Feir modulational instability on an initially unmodulated nonlinear wave train: 

produce an overestimate of the nonlinearity of the paddle-generated waves in the 
experiments when compared with the measure of nonlinearity provided by the second- 
order quantity lea for Stokes wave profiles in the theory. As a result, a correction factor 
must be introduced when experimental results are compared with theoretical predic- 
tions. Lake & Yuen (1977) have used the Benjamin & Feir prediction that S = (lea), 
for the most unstable side-band components, together with measurements of 6 for 
modulations which develop on paddle-generated wave trains of initially uniform 
amplitude, to obtain a relationship between the values of ka obtained from amplitude 
and frequency measurements [i.e. (ka),,,,] and the values of La which correctly 
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FIQURE 2. Measured wave amplitude spectra showing emergence and growth of the most unstable, 
6 = (ka),, side bands from background noise level. (a) x = 5 ft,  ( b )  x = 10 ft,  (c) z = 20 ft, 
( d )  x = 30 ft .  
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characterize the nonlinearity of the wave train for comparison with theory (obtained 
from the condition that (ka), = 6, using the measured values of 6). They find that 
(ka)o ( = 6 )  = 0.78 (ka)meas and, further, that when this correction factor is used good 
quantitative agreement is obtained between the modulation growth rates predicted 
by the theory and those measured experimentally, including growth rates measured 
in experiments where initial modulations were imposed at frequency separations for 
which Simp # (ka),,? as well as growth rates measured in experiments reported by 
Benjamin (1967). The same correction has been applied to the experimentally deter- 
mined initial values of ka reported in this paper to make them compatible with the 
assumptions of the theory. As shown in $3.3, we find that when this is done one also 
obtains quantitative agreement between experimental and theoretical results for the 
long-time evolution of nonlinear wave trains. 

Spectra, such as those shown in figure 2, have been used to provide quantitative 
measurements of the growth of amplitude modulations on nonlinear wave trains during 
the initial stage of their evolution. This was done by normalizing the magnitudes of the 
two side-band components by the magnitude of the carrier-wave frequency com- 
ponent at  each measurement station and plotting the ratios against propagation 
distance. An example of such a result is shown in figure 3. The use of the ratios of side- 
band magnitudes to carrier magnitudes removes the first-order effect of dissipation, 
since the dissipation rates for the side-band and carrier components should be nearly 
identical owing to the small frequency differences between them. It should be possible, 
therefore, to make useful comparisons between the experimental side-band growth 
rates and the side-band growth rates predicted by the inviscid analysis of Benjamin & 
Feir. This assumption appears to be confirmed by comparisons of the measured and 
predicted growth rates (as in figure 3), which show good agreement between experi- 
ment and theory. In  making such comparisons, the temporal growth rate in the theory 
has been transformed to a spatial growth rate using the linear group velocity, as 
described in $3.3 and in Benjamin & Feir (1967). The experimental results conform to 
the predictions of the Benjamin & Feir analysis in that the upper and lower side-band 
components are of equal magnitude and grow a t  the predicted exponential rate 
throughout the stage of evolution for which their normalized magnitudes are small 
compared with unity. Furthermore, the data show that the exponential rate of side- 
band growth remains essentially constant, indicating that the second-order effect of 
dissipation is also unimportant during the initial stage of evolution, since there appears 
to be no significant weakening of the overall nonlinearity of the system as a result of 
energy depletion during this stage. 

The data in figure 3 were obtained from a series of experiments which were per- 
formed using wave trains having equal values of f, ka and 6. Each wave train was 
generated with an amplitude modulation imposed initially. The only difference bet- 
ween the individual experiments was that each was performed using initial modula- 
tions of a different magnitude. The magnitudes of the imposed initial modulations, as 
measured by the normalized side-band amplitudes, were 8, = 0.01, 0.05, 0.10 and 
0.15. We have found that the measured values of the normalized side-band amplitude 

t When side bands were imposed initially a t  values of S which differed from (ka) ,  by more 
than about 25 yo, another pair of side bands at  S = (ka), grew from background perturbations. 
In  such cases, both pairs of side bands (i.e. both modulations) grew but the most unstable pair, 
a t  S = (ka),, grew at the faster rate and eventually became dominant (see Lake et al. 1976). 
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Predicted # A 

side-band growth 0 

[Benjamin & Feir) 

‘.i ”/ ff 0 

50 60 10 20 30 40 
Propagation distance (feet) 

FIGURE 3. Evolution of a nonlinear finite amplitude wave train : normalized side-band amplitudes 
VS. effective propagation distance. Note that the analysis of Benjamin t Feir, which asumes 
equal side-band amplitudes and predicts the initial side-band growth rate, applies for 

An effective propagation distance that is greater than the tank length has been obtained by 
performing a series of experiments with progressively higher initial side-band amplitudes. 
fo = 2.5 Hz, (ka),,, = 6 = 0.2, (ka), = 0.16. Solid symbols, lower side band; open symbols, 
upper side band. Initial side-band amplitude, 8,: 0, 1 %; 0, 5 % ;  A, 10%; 0, 15%. 

s2 < O(l0-1). 

S from such a series of experiments can be plotted against an ‘effective’ propagation 
distance in such a way that the data overlap for the entire range of effective propaga- 
tion distance.7 This indicates that the effect of using these different initial side-band 
amplitudes So is equivalent to re-starting the same experiment at  different initial 
values of the effective propagation distance. In this way, we have been able to measure 
the characteristics of wave trains as they evolve from nearly unmodulated initial 
conditions (So = 0.01) and propagate over distances that are effectively longer than 
the length of our tank. The results of such experiments, as in figure 3, can be used to 

t The 
equal to 
of data 

data obtained from the experiment performed using initial side-bend amplitudes So 
0.01 are shown plotted against the actual propagation distance in figure 3. For each set 
obtained from an experiment performed using So > 0.01, the values of the actual 

propagation distance were increased b y  the amount required to place the magnitude of the 
normalized side-band strength measured at the first probe station on the line defined by the 
So = 0.01 data. 
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identify the stage of wave-train evolution for which the analysis of Benjamin & Feir 
(a linearized stability analysis which requires that S be small compared with unity) is 
applicable. They also provide an indication of the characteristics of the long-time 
evolution of nonlinear wave trains as measured by the normalized amplitudes of the 
two original side-band components. The data show that the amplitudes of the side- 
band components are equal and grow at a constant exponential rate until they reach 
levels such that S2 2 O(l0-l). Beyond this stage of evolution the side-band com- 
ponents begin to grow at decreasing rates, and they eventually reach their maximum 
levels. A t  the sa.me time, the corresponding spectra show a spread of energy to many 
modes other than the original three at  the side-band and carrier frequencies. Thus the 
continued evolution of the wave train to still larger effective propagation distances 
cannot be obtained experimentally using an initial wave form with a single value of 
8, if 8; > O(l0-l) [as confirmed by experiments using 8; > O(lO-l)], nor can its 
continued development be described theoretically by an analysis using one pair of 
side bands and a single value of S. Thus we conclude that for S2 > O( 10-l) the Benja- 
min & Feir analysis is not applicable and further evolution of the wave train must be 
described by a uniformly valid nonlinear theory. 

3.2. Long-time evolution: FPU recurrence 

The discovery that nonlinear wave trains on deep water are unstable to infinitesimal 
perturbations of a type which could be expected in any realistic environment led 
Benjamin & Feir (1967) and Benjamin (1967) to speculate that the resulting exponen- 
tial growth of amplitude modulations would eventually lead to the disintegration of 
such wave trains and the redistribution of their energy over a broad spectrum. The 
possibility that such an end state might be the outcome of the long-time evolution of 
nonlinear wave trains appears quite plausible in view of the results of the Benjamin & 
Feir analysis for the initial stage of wave-train evolution. In a discussion of that analy- 
sis, however, Hasselmann (1967) went considerably further in statements regarding 
the implications of the wave-train instability. He interpreted the discovery of the 
wave-train instability as further evidence for his contention that ‘In any wave 
spectrum, the resonant nonlinear interactions have an irreversible tendency to spread 
the wave energy evenly over all wavenumbers’, a tendency which he had found in an 
earlier calculation (Hasselmann 1963). We find that this statement, as applied by 
Hasselmann (1967) to the case of nonlinear wave trains, is directly contradicted by the 
results of our experimental investigation of the long-time evolution of nonlinear 
wave trains.? As shown in the following, we find that the resonant nonlinear inter- 
actions which lead to the instability of nonlinear wave trains do not have an irre- 
versible tendency to spread energy evenly over all wavenumber components during 
the long-time evolution of such wave trains. 

Chu & Mei (1970, 1971), who studied the nonlinear evolution of the envelope of a 
deep-water Stokes wave train and found that envelope modulations tend t o  disinte- 

t Although this proposition by Hasselmann has been applied widely in studies of wind waves, 
results of a recent investigation by Lake & Yuen (1976) indicate that it is also not applicable to 
the case of nonlinear wind waves. Furthermore, the maintenance of coherence in such nonlinear 
systems is not confined solely to one-dimensional cases, as has been found by Ferguson & Yuen 
(1977) in studies of the FPU properties of solutions of the nonlinear Schrodinger equation in two 
space dimensions. 
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grate into smaller envelope pulses of permanent form, and Hasimoto & Ono (1972), 
who discussed the nonlinear Schrodinger equation in the context of nonlinear deep- 
water waves, have proposed that the end state of the instability of nonlinear wave 
trains to modulations might be a series of solitary envelope pulses of permanent form. 
The results of several experimental investigations of nonlinear wave-envelope pulses 
appear to suggest the possibility of such an end state. Feir (1967) used wave amplitude 
measurements at  two locations in a wave tank to observe the evolution of wave- 
envelope pulses and reported the first observation of the disintegration of a pulse into 
more than one pulse. His measurements were performed before the concept of stable 
envelope pulses or envelope solitons was known, however, and he offered very little 
explanation of the phenomenon. In  a later investigation, Yuen & Lake (1975) reported 
experimental measurements of the evolution and interaction of wave-envelope pulses 
which confirm the soliton properties predicted by exact solutions of the nonlinear 
Schrodinger equation for pulse initial conditions. Their results demonstrate that an 
arbitrary initial envelope pulse will eventually disintegrate into a number of stable 
envelope pulses or solitons which have a permanent form as long as dissipative effects 
are not significant. 

In our experimental investigation of nonlinear wave trains, we have observed cases 
in which initially strongly modulated wave trains have evolved into series of wave- 
envelope pulses. An example is shown in figure 4. The pulses which develop have profiles 
that are very similar to both the profiles of the solitons measured in the pulse experi- 
ments of Yuen & Lake and the profiles predicted for soliton pulses by solutions of the 
nonlinear Schrodinger equation. Most of our wave-train experiments indicate, how- 
ever, that such ‘pulse trains’ are not the end states of the process of wave-train evolu- 
tion, and that the wave systems evolve still further. 

The series of wave amplitude records shown in figure 5 is more typical of what we 
have observed in general. During the initial stage of evolution, an initially unmodu- 
lated wave train develops an amplitude modulation as predicted by the analysis of 
Benjamin & Feir (see results for x = 5, 10 and 15 f t  in figure 5). As the wave train 
evolves further, the modulation becomes large and the results of their linearized 
stability analysis no longer apply. Eventually, the modulation becomes so large that 
where the modulation envelope reaches its minimum levels the amplitudes of indi- 
vidual wave crests approach zero (x = 25 f t  in figure 5). It is a t  this stage that wave 
trains may take on a ‘pulse-train’ appearance. As the process of evolution continues 
still further, however, the wave train demodulates and the wave form returns to a 
relatively uniform state (x = 30 f t  in figure 5 ) .  Experimental results such as these 
demonstrate that the nonlinear instability of an initially unmodulated wave train does 
not lead to wave-train disintegration, and that ‘pulse trains’, if they occur, are simply 
special strongly modulated stages in a continuing process of wave-train evolution. 

Power spectra of wave amplitude measurements at  three stages during the evolution 
of such a wave train are displayed in figure 6. The first shows the spectrum of a wave 
train during the onset of the initial instability. The carrier-wave frequency, its har- 
monics and the pair of side-band frequency components corresponding to the growing 
amplitude modulation are quite evident in the spectrum, even though the wave form 
itself is still nearly uniform. The second spectrum is one obtained from measurements 
of the same wave train at  a stage where it is undergoing strong modulations, as can be 
seen in the wave form. At this stage, the wave energy has spread over many frequency 
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x= 5 ft 

x= 10 ft 

X =  15 ft 

x=20 ft 

x=25 ft 

r = 3 0  ft 

FIGURE 4. Wave amplitude measurements showing the evolution of a modulated wave train into 
a ‘pulse train’.f, = 2.5 Hz, (ka), = 6 = 0.1, 8, = 0.5. 
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Wave 
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x=5 ft 

x= 10 ft  
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x=20 ft 

x=25 ft 

x=30 ft 

FIGURE 5. Example of the long-time evolution of an initially uniform nonlinear wave train. 
Initial wave frequency is 3.6 Hz; oscillograph records shown on expanded time scale to display 
individual wave shapes ; wave shapes are not exact repetitions each modulation period because 
modulation period does not contain integral number of waves. 

components in the spectrum. The wave train appears to be in the process of losing its 
coherence and disintegrating. At a still later stage, however, as shown in the third 
spectrum, the energy has returned to the original frequency components (carrier, 
harmonics and side bands) of the initial wave train. The wave train has become almost 
fully demodulated, as can be seen in the corresponding wave form. 

This type of long-time behaviour of an unstable nonlinear system is unusual but not 
unknown. It was first discovered by Fermi, Pasta & Ulam (1940) during numerical 
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FIGURE 6. Evolution of a nonlinear finite amplitude wave train: wave forms and power spectral 
densities z)s. propagation distance. (a)  Initial stage of side-band growth, z = 5 ft, carrier wave 
with small amplitude modulation. ( b )  z = 10 ft, strong amplitude modulation, energy spread 
over many frequency components. (c) z = 25 ft, reduced amplitude modulation, return of 
energy to frequency components of original carrier wave, its side bands and harmonics. f a  = 
3 * 2 5 H ~ ,  (ka), = S = 0.23, (ka)5ft = 0.29. 
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work on anharmonic lattice vibrations, and has become known as t,he Fermi-Pasta- 
Ulam, or FPU, recurrence phenomenon. Nonlinear systems which exhibit FPU 
recurrence are characterized by the general property that instabilities which lead to 
large modulations and a spread of energy over many spectral components do not 
ultimately lead to a complete thermalization of the energy and a random end state. 
Instead, the energy returns to the initial modes, and the initial wave form is recon- 
structed, or almost reconstructed, at  the end of one cycle of modulation and demodula- 
tion. In  the absence of additional effects such as dissipation, the end state of such 
systems is actually a continuing series of these recurrence cycles. We believe that our 
wave-train experiments strongly suggest that, in the absence of dissipative effects, the 
end state of the evolution of a nonlinear wave train on deep water is neither random nor 
steady, but is a series of periodically recurring states. 

3.3. Namerical computations and discussion 

For weakly nonlinear deep-water waves with a carrier frequency w, (in radians, 
and hence a carrier wavenumber k,), it was shown by Zakharov (1968), Hasimoto & 
Ono (1972) and Davey (1972) that the complex envelope A = aeie obeys the nonlinear 
Schrodinger equation : 

The free-surface elevation 7 is related to A by 

7 = Re {A  exp [ ( i (k ,  x - wo t ) ] } .  (2) 

To obtain ( l ) ,  it must be assumed that viscous effects are small, and that the wave- 
number and frequency modulations, given by aO/ax and - aO/at, respectively, are 
small compared with the carrier wavenumber k, and frequency wo. 

The initial-value problem for (1) has been solved exactly by Zakharov & Shabat 
(1972) for initial conditions which approach zero sufficiently rapidly as 1x1 + c/3 (i.e. for 
envelope pulses), using the inverse scattering method. The exact solution predicts 
that an arbitrarily shaped initial envelope pulse will disintegrate into a definite number 
of solitons and an oscillatory tail. The tail is relatively small and unimportant, and it 
disperses linearly, resulting in a t-* amplitude decay. The solitons are permanent, 
progressive envelope pulses with sech profiles and heights that are inversely propor- 
tional to their characteristic widths. The solitons are stable in the sense that they can 
survive interactions with each other with no permanent change other than a possible 
shift in position and phase. These theoretical predictions of Zakharov & Shabat (1972) 
were later tested experimentally by Yuen & Lake (1975). Their measurements of 
wave-envelope pulses propagating in a deep-water wave tank provide good qualitative 
verification of the evolution and interaction properties predicted by the exact solu- 
tions of the nonlinear Schrodinger equation. They also compared the experimental 
measurements with results of numerical computations and found that the equation 
provides a good quantitative description of the evolution of nonlinear wave-envelope 
pulses on deep water. 

For the case of the evolution of a nonlinear continuous wave train, the inverse 
scattering method does not apply and no exact analytical solution to the nonlinear 
Schrodinger equation has yet been found. As discussed by Benney & Newel1 (1967), 
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Zakharov (1968) and Hasimoto & Ono (1972), however, it can be shown that a stability 
analysis of the nonlinear uniform wave-train solution A = a, exp ( - &kt a%, t )  to the 
nonlinear Schrodinger equation recovers the results of the Benjamin & Feir stability 
analysis, which we have verified experimentally. I n  addition, the pulse experiments 
provide good evidence that (1 )  gives the correct asymptotic behaviour for wave- 
envelope pulses. We are therefore confident that a uniformly valid description of the 
evolution of a nonlinear continuous wave train can be obtained by solving an initial- 
valueproblem for (I). For theproblem of a continuous wave train the solution must be 
obtained numerically. 

We have developed a numerical program which solves initial-value problems 
for the nonlinear Schrodinger equation using a modified split-step Fourier 
method. The program soIves the problem of the time evolution of a wave train 
that is periodic in x, with period equal to the length of the wave-train segment, 
and that is infinite in extent. I n  the laboratory, the wave train evolves as it 
propagates in the Z direction from an initial state given at Z = 0 and is periodic in i, 
where (3, H) are the physical coordinates. Thus the results of the numerical computa- 
tions can be transformed to correspond to this situation by means of the co-ordinate 
transformation (2, t )  = (C,,?, ZlC,), where C, = 00/2k,. We have used this transforma- 
tion, which was also employed by Benjamin & Feir (1967), Benjamin (1967) and 
Chu & Mei (1970, 1971) in making comparisons between the results of theory and 
experiment. 

The use of an initial-value problem for the evolution of a segment of a wave train 
with periodic boundary conditions to model the problem of the evolution of a con- 
tinuous wave train is motivated, and we believe well justified, by our experimental 
measurements of wave-train evolution. We have found experimentally that the period 
of the modulation of a nonlinear wave train remains constant throughout the process 
of evolution, even while the wave train evolves through stages in which the modulation 
magnitude reaches a maximum and individual waves become so steep that small-scale 
wave breaking or generation of parasitic capillary waves occurs near their crests. The 
constancy of the modulation period of a wave train as it evolves from an initially 
unmodulated condition can be seen in the wave records of figure 1. The series of meas- 
ured wave forms in figure 7 shows an example of the preservation of constant modula- 
tion period during the evolution of an initially strongly modulated wave train. For the 
case shown in figure 7, the modulation became so strong that the most-amplified waves 
in each modulation period experienced wave breaking or generation of capillary waves 
near the 12 f t  station in the tank. The wave records in the figure show that the modula- 
tion passed through a pulse-train stage a t  about 15 ft.  As it evolved further it demodu- 
lated somewhat, completing an FPU recurrence cycle a t  the 25 ft station, where there 
is a nearly exact reconstruction of the wave form measured a t  the 5 ft station. The 
examples in figures 1 and 7 are typical of our experimental results in that, throughout 
the entire process of wave-train evolution, the period of the modulation remains un- 
changed. Since the period of the modulation is constant, the evolution of the wave 
train can be computed by solving the nonlinear Schrodinger equation for the evolution 
of a segment of the wave train having the length of one modulation period with 
periodic boundary conditions. For problems involving initially unmodulated wave 
trains the computations can be performed using a very small initial modulation magni- 
tude, and the appropriate modulation length may be obtained from the initial condi- 
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FIGURE 7. Typical wave amplitude records of the evolution of a wave train with large initial 
modulation. Initial conditions: 6 = 0.2, (ka), 1: 0.2, So N 0.5,f0 = 2.5 Hz. Notice that the period 
of the modulation (denoted by L)  remains unchanged even though the waves themselves undergo 
strong modulation with wave breaking and capillary generation occurring near z = 12 ft. 

tions using the condition for the most unstable initial modulation as given by the 
stability analysis. 

Furthermore, the constancy of the modulation period during the evolution of a 
nonlinear wave train, together with the known properties of nonlinear wave-envelope 
pulses, suggests the following phenomenological interpretation of wave-train evolution 

3 F L M  83 



66 B. M .  Lake, H .  C. Yuen, H .  Rungaldier and W .  E .  Ferguson 

and FPU recurrence in terms of solitons and tails. If the evolution of a single modula- 
tion period of a wave train is treated as though it were an isolated pulse, one knows from 
theexact solutions for pulses that it will evolve into a fixed number of solitons and a tail. 
Since the pulse is actually a segment of a wave train that has periodic modulations, 
however, it has neighbours which evolve in the same manner as it does and so it is 
subject to periodic boundary conditions. As the pulse and its neighbours evolve in the 
process of soliton formation, their soliton components change alignment. This alters 
the wave-form modulations and produces a spread of energy over many components 
in the spectrum. If the soliton components have speed differences, the components 
which leave on one side of a modulation period are replaced by their counterparts from 
the pulse on the other side. Because of the stability of the solitons and their formation 
process, the only effect of the interactions is a series of phase shifts, so that the soliton 
components will eventually return to their original alignment and reconstruct the 
initial state of the wave train, except for imperfections which arise owing to the effects 
of dissipation and the small contribution of the dispersive tails. A similar argument was 
first offered as an explanation of FPU recurrence by Zabusky & Kruskal (1965), who 
observed recurrence phenomena in numerical solutions of the Korteweg-de Vries 
equation. At the time of their investigation exact solutions of the equation had not yet 
been found and consequently the existence of the tail and its role were not identified. 

If two or more soliton components have no net difference in speed, the above argu- 
ment must be modified. Recurrence is still possible, however, because, as shown by 
Roskes (1976), interactions between soliton components propagating at  the same speed 
can produce a series of shifts in relative phase or position which will lead eventually to 
recurrence in the evolution of a true pulse initial condition. It follows, therefore, that 
the same process should also lead to recurrence in nonlinear wave trains when there are 
no speed differences between the soliton components of each modulation period. In  fact, 
it  is interesting to note here that the recurrence times we have observed in our wave- 
train experiments are of approximately the same length as the times required for the 
emergence of soliton components in our earlier pulse experiments, and that the soliton 
components of each pulse had at  most only very small speed differences. For this reason 
we suspect that the recurrence we have observed in our wave-train experiments is best 
described in terms of interactions between solitons which have no net speed differences. 

The results of our numerical computations of wave-train evolution demonstrate that 
solutions to initial-value problems for the nonlinear Schrodinger equation with periodic 
boundary conditions exhibit FPU recurrence. In  the absence of dissipative effects, 
the recurrence leads to a perfect reconstruction of the initial conditions. An example 
of the computed time evolution of the envelope of a modulated wave train is shown in 
figure 8. The initial envelope was given a 10 yo modulation a t  the wavelength corre- 
sponding to the most unstable Benjamin-Feir modulation for the wave train, and the 
results shown in the figure extend over one modulation period in space. The modula- 
tion of the computed wave envelope grows in time, reaches a maximum at time = 5-3 
and returns to the initial level, completing one FPU recurrence cycle, at  time = 31.8, 

For comparison with experimental data, we have also transformed the results of 
such numerical calculations to obtain power spectra at  various stages of wave-train 
evolution. When this is done, the magnitudes of the pair of side-band frequency com- 
ponents which characterize the amplitude modulation can be evaluated and normalized 
using the magnitude of the carrier frequency component. An example of such a com- 
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FIGURE 8. Fermi-Pasta-Ulam recurrence in nonlinear Schrodinger equation. The amplitude of 
the solution of the nonlinear Schrodinger equation is plotted against non-dimensionalized space 
(&kc) and time (&ao kg ug 6). Initial condition contains a 10% sinusoidal modulation which 
corresponds to the most unstable Benjamin-Feir perturbation. It can be seen that the maximum 
modulation is attained at  time = 5.3; the time required for a complete recurrence cycle is 
time = 31.8. 

parison is shown in figure 9, where the measured and calculated results for the evolu- 
tion of a nonlinear wave train are compared using the average normalized energy of the 
side-band frequency components. The experimental data were obtained from a series 
of measurements of the type shown in figure 3, for which several different initial 
modulation magnitudes were imposed in order to obtain measurements of wave- 
train evolution over an effective propagation distance longer than the length of the 
wave tank. The theoretical curves in figure 9 include the result from the Benjamin- 
Feir linearized stability analysis, the result from the inviscid solution of the nonlinear 
Schrodinger equation and results from solutions of the nonlinear Schrodinger equation 
with an additional term used to model the effects of dissipation. Each has been matched 
in magnitude to the side-band energy level measured at  a propagation distance of 
5 ft and calculated using the effective initial value of (ka), determined from the ampli- 
tude and frequency measured at the 5 ft station as described in 3 3.1. 

The dash-dot curve in the figure is a result of the inviscid calculation using the non- 
linear Schrodinger equation with no dissipative effects included. At  the initial stage of 
evolution, it can be seen that this result is in agreement with the growth rate predicted 
by Benjamin & Feir (given by the dashed curve) as well as with the experimental data. 
The Benjamin & Feir result, however, corresponds to unbounded growth of the dis- 

3-2 
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FIGURE 9. Comparison of numerical and experimental results for the evolution of a wave train 
from nearly uniform initial conditions, as measured by the normalized average energy of the 
most unstable Benjamin-Feir side-band components. The numerical solutions show the effect of 
including dissipation and wave breaking in the calculations. 0, experiment, (ka), = 0.16; 
_ _ _  , Benjamin & Feir (1967); -.-, nonlinear theory, inviscid; -..- , nonlinear theory with 
dissipation ; -- , nonlinear theory with dissipation plus wave breaking. 

turbance, whereas the results from the Schrodinger equation and the experimental 
data indicate that the magnitudes of the side-band ratios reach a saturation level and 
eventually subside, reflecting the tendency of the wave train to demodulate and under- 
go recurrence. We feel that i t  is important to note that, even when dissipation is neg- 
1ect)ed in the calculations, the time a t  which the Saturation occurs as calculated using 
the nonlinear Schrodinger equation is in good agreement with the time of occurrence of 
side-band saturation in the experimental data. 

Beyond this stage of evolution, however, a substantial difference develops between 
the results of the inviscid theory and the results of the experiments. The cause of this 
discrepancy appears to be attributable to the fact that dissipation has been neglected 
in the calculations. The inviscid solution of the nonlinear Schrodinger equation 
predicts demodulation a t  an exponential rate and eventual reconstruction of the initial 
conditions on the completion of one FPU cycle. The data show a much smaller reduc- 
tion in side-band energy, followed by renewed growth of the average side-band energy 
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levels. Although representation of the wave-train properties in terms of the normalized 
average side-band energy should effectively scale out the fist-order (linear) effects of 
dissipation, there can be secondary (nonlinear) effects which are not ecaled out by the 
normalization and which may become significant during the long-time evolution of the 
wave train. One such effect is an alteration of the time scale or rate of evolution. In 
order to investigate the importance of such dissipative effects on the characteristics of 
the long-time evolution of nonlinear wave trains, we have performed calculations 
using the nonlinear Schrodinger equation with an additional term to model dissipation: 

When v is a constant, the added term introduces a constant exponential decay in the 
case of infinitesimal waves, and is a generally accepted model for the viscous dissipa- 
tion of surface waves. Computations using values of v typical of that of the kinematic 
viscosity of water yield results which exhibit a trend towards agreement with the data, 
but still fall short of actual agreement. An example of such a calculation is shown in 
figure 9. 

We recall, however, the fact that in the experiments formation of capillary waves 
and wave breaking often occurred when the wave trains were strongly modulated. 
Both of these activities are extremely effective in dissipating wave energy. It therefore 
appears that abnormally large dissipative effects may be present when the wave trains 
are strongly modulated. To model this type of abruptly increasing dissipation, we have 
allowed the value of v to be a function of time. Specifically, we have allowed v to take 
the usual value based on the kinematic viscosity of water as long as the steepness of the 
wave train remains small everywhere, but have let it increase exponentially with 
increasing wave steepness once the local steepness of the wave train exceeds the value 
beyond which capillary waves were observed in the experiments. Furthermore, in 
view of the fact that the measured gravity waves never had a value of ka in excess 
of the Stokes limiting value of 0.448, we have constructed the dissipation model 
such that the dissipation becomes infinitely large as the Stokes value is approached. 
The resulting expression for v is 

where (lea), is the maximum steepness in a modulation period at  a fixed time step, 
(ka)cap is the minimum steepness at  which formation of capillary waves is first observed 
(estimated to be approximately equal to 0.3 on the basis of experimental observations) 
and (lea), = 0.448 is the Stokes limiting steepness. The quantities vl and y are adjust- 
able parameters. An example of the results of calculations using this dissipation model 
and relatively conservative estimates of v1 and y is shown in figure 9. The results of the 
calculations performed using this dissipative model are in much better agreement with 
the experimental data than are the results of the non-dissipative calculations. Although 
the dissipation model we have used to explore the consequences of a large and abrupt 
dissipative mechanism is admittedly both crude and arbitrary, the extent to which it 
improves the agreement between the experimental and numerical results indicates to 
us that in cases where we have observed significant differences between the measured 
and predicted long-time characteristics of nonlinear wave trains, as in figure 9, the 
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differences can be attributed to the long-time effects of dissipation. This appears to be 
true for differences in the extent of recurrence, for example, but it is interesting to 
note once more that the point at which the wave-train modulations reach their maxi- 
mum level, and demodulation begins, is well predicted by both the inviscid and the 
dissipative version of the Schrodinger equation. It should also be pointed out that, 
once nonlinear wave trains have become highly modulated, a representation of wave- 
train evolution which is based on the behaviour of only three modes (two side bands 
normalized by the primary, as in figure 9) is not complete, and does not bring out the 
features of FPU recurrence nearly as strongly as do either the original wave records or 
the full spectra. 

Comparisons of the experimental measurements and the results of numerical solu- 
tions of the nonlinear Schrodinger equation indicate that there is good qualitative 
agreement between the observed behaviour of nonlinear wave trains and the pheno- 
mena predicted using the equation. Furthermore, the experimental and numerical 
results agree quantitatively for the early stages of wave-train evolution and for long- 
time evolution as well, if an appropriate model is used to account for the long-time 
effects of dissipation (additional comparisons are reported in Lake et al. 1976). The 
comparisons indicate that this is true even when wave trains become so strongly 
modulated that, at  isolated locations, individual waves become steep enough to 
generate capillary waves or even to break. These violent but localized activities appear 
to  have little effect on wave-train evolution other than to cause an enhancement of 
dissipation. When the added dissipation is taken into account, the system is still well 
described by the nonlinear Schrodinger equation. This seems somewhat surprising 
since the theory is a weakly nonlinear theory, and one expects it to be inapplicable 
when waves are so steep that they break. On the other hand, it can be argued that the 
mismatch in scales between these events and the envelope modulation is so great that 
direct interaction is highly unlikely, and the net effect of enhanced dissipation is really 
a reasonable consequence. One still has to  marvel at  the wide range of applicability of 
the nonlinear Schrodinger equation, which is a result of retaining only the first non- 
linear term in the Stokes expansion. The following observation may be interesting. It 
is widely accepted that the Stokes limit (ka = 0.4488) gives a theoretical upper bound 
for the ka of a gravity wave. Experimental evidence has more or less borne out this 
assertion; ka as measured by a wave gauge rarely, if ever, exceeds 0.38. This means 
that, even at  the point of wave breaking, the magnitude of this nonlinear correction in 
the dispersion relation, which is responsible for the form of ( i ) ,  still does not exceed 
10% of that of the linear term. Strictly speaking, since we have not estimated the 
possible contribution of other terms in the series, this cannot be used as an explanation 
for the success of the nonlinear Schrodinger equation. However, we can consider this 
as being suggestive of the possibility that, as far as the envelope evolution is concerned, 
gravity waves are weakly nonlinear in nature. The detailed processes of wave breaking 
and related phenomena are, of course, not described by the weakly nonlinear theory. 

There is one characteristic of the long-time evolution of nonlinear wave trains which 
we have observed in many of our experiments but which cannot be found in numerical 
solutions of the nonlinear Schrodinger equation (either inviscid or dissipative). When 
experiments were performed using initially uniform, or nearly uniform, wave trains 
with large initial steepness, recurrence cycles were observed in which the wave trains 
became strongly modulated and then demodulated until they were again nearly uni- 
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form. In  these cases, however, as the wave trains demodulated and the energy returned 
to the frequency components of the original wave trains (carrier, side bands and har- 
monics), the lower side-band component became much stronger than the upper side- 
band component and eventually became stronger than the component at the carrier 
frequency. As the wave trains became uniform again, the wave forms and the power 
spectra clearly showed that the dominant component was the component at  the 
frequency of the lower side band of the original carrier. This phenomenon is evident in 
the wave forms and spectra of figures 5 and 6. It is recurrence in the sense that the 
wave trains become uniform and their wave energy returns to the components of their 
initial spectra, but the uniform wave trains which reappear are not exact reconstruc- 
tions of the originals because they have new, lower, carrier frequencies. This domi- 
nance of the lower side-band component cannot occur in numerical solutions of the 
nonlinear Schrodinger equation, as can be seen by noting that during the initial stages 
of evolution of such wave trains the side-band components are symmetric about the 
carrier frequency, and that this initial symmetry will be preserved in the solutions of 
the equation throughout the entire FPU recurrence process. Although we do not have 
a good explanation for the shift to lower carrier frequencies that we have observed in 
these experiments, there is some evidence that it may be associated with the fact that 
the steepness of gravity waves cannot increase beyond a fixed limiting value. In 
experiments where wave trains were generated with strong initial modulations and 
large initial steepness, we have observed that recurrence cycles occur without changes 
in the wave-train carrier frequency. An example of such a case is shown in figure 7. The 
significant difference between these cases and the cases for which there are carrier- 
frequency changes appears to be the amount by which the steepness of the most 
amplified waves in the modulations of the evolving wave trains ultimately increases 
over the steepness of the initial waves. If the initial steepness of the waves in a uniform 
wave train and the initial steepness of the largest wave in a strongly modulated wave 
train are of the same magnitude and are large, the most amplified waves which occur 
during the evolution of the initially uniform wave train will be much steeper than any 
of the waves which develop during the evolution ofthe initially modulated wave train. 
This observation suggests to us that the shift to a lower carrier frequency, and therefore 
to a longer length scale and lower wave steepness, may take effect when wave-train 
modulations would otherwise require that individual waves exceed the maximum 
realizable wave steepness. The fact that there were waves which were modulated to the 
point of capillary generation or breaking in every case where a carrier-frequency 
change was measured is consistent with this hypothesis. Another possibility is that the 
dominance of the lower side band is caused by dissipation. Since the effects of dissipa- 
tion would tend to favour the survival of the lower modes over the higher, the qualita- 
tive trend would be correct. It seems somewhat unlikely, however, that dissipative 
effects alone could account for the relatively rapid development of very pronounced 
differences in the magnitude of components which have such small frequency differ- 
ences as do the side-band and carrier components of these wave trains. Although we are 
unable at this time to offer a satisfactory explanation of this phenomenon, we believe 
that it is a potentially important characteristic of evolving nonlinear wave trains and 
one that is worthy of further investigation. 
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4. Conclusions 
Experiments have been performed to investigate the evolution of a nonlinear con- 

tinuous wave train on deep water. During the initial stage of evolution, amplitude 
modulations develop and grow exponentially as predicted by the stability analysis of 
Benjamin & Feir (1967). When the magnitude of the modulations, measured by the 
ratio of the energy in the growing side-band frequency components normalized by the 
energy in the carrier frequency component, becomes of order 10-l the results of the 
stability analysis no longer apply. The further evolution of the wave train is character- 
ized by continued growth of the modulations accompanied by a spread of energy over 
many spectral components, and then demodulation and return of the energy to the 
original spectral components of the initial wave train. The experimental results 
strongly suggest that the end state of the evolution of a nonlinear wave train, in the 
absence of dissipative effects, would be a continuing series of modulation-demodula- 
tion FPU recurrence cycles. The measurements also show that the period of the modula- 
tions remains constant during the process of evolution. For an initially uniform wave 
train in the presence of random infinitesimal perturbations, the modulation period can 
be determined from the initial conditions using the results of the stability analysis 
of Benjamin & Feir (1967). Results of previous investigations have shown that the 
governing equation for nonlinear deep-water waves with a carrier frequency is the 
nonlinear Schrodinger equation (Zakharov 1968), that the equation reproduces the 
Benjamin-Feir stability results (Benney & Newel1 1967; Zakharov 1968), and that the 
equation provides a quantitatively correct description of the long-time evolution of 
nonlinear wave pulses (Yuen & Lake 1975). The equation should therefore provide a 
uniformly valid description of the evolution of a nonlinear continuous wave train. The 
existence of a known and constant modulation period makes it possible to obtain 
numerical solutions of the nonlinear Schrodinger equation for the evolution of a non- 
linear continuous wave train by solving for the evolution of one modulation period of 
the wave train subject to periodic boundary conditions. The results of these numerical 
solutions of the nonlinear Schrodinger equation have been found to exhibit the FPU 
recurrence phenomenon, confirming the indications of the experiments regarding the 
long-time behaviour of nonlinear wave trains. The constancy of the period of wave- 
train modulations, and the known properties of evolving nonlinear wave pulses and 
solitons have been used to provide a phenomenological description of the FPU recur- 
rence process. Comparisons of the experimental data with results from numerical 
solutions of the nonlinear Schrodinger equation show that the equation provides a 
good quantitative description of wave-train evolution from the earliest stage of 
instability through the stages where the modulations become very strong, reach a 
maximum and then begin to subside. At still later stages, the experimental and num- 
erical results are in qualitative agreement on the tendency of the wave trains to return 
to uniform conditions and undergo continued recurrence cycles. Comparisons bet- 
ween the measured data and numerical solutions of the equation with terms added to 
model dissipative effects indicate that the observed quantitative differences between 
experiment and theory a t  the later stages of evolution may be attributed to the long- 
time effects of dissipation, which eventually become significant in the experiments. 
Under certain conditions, the evolving wave trains exhibit a shift to a new, lower, 
effective carrier frequency as they undergo strong modulations and return to uniform 
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conditions. This phenomenon is not predicted by solutions of the nonlinear Schrodinger 
equation and may be associated with amplification of individual waves to their 
maximum realizable values of steepness, although no satisfactory explanation for the 
phenomenon has yet been found. 

The results of this investigation provide evidence that the end state of the evolution 
of a non-dissipative nonlinear continuous wave train is neither steady nor random, but 
is instead a series of periodically recurring states. The nonlinear resonant interactions 
which occur during the evolution of a nonlinear wave train on deep water do not lead 
to an irreversible spread of energy over all spectral components; in fact, coherence is 
retained throughout the process of evolution. In  realistic environments coherence will 
be lost ultimately not as a result of the nonlinearity of the wave trains but because of the 
long-time effects of dissipative mechanisms such as surface viscous dissipation, 
generation of capillary waves and wave breaking. 
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